Eigenvectors and Eigenvalues Tutorial Sheet, Sheet #4B
Learning targets
- Understand and produce visual representations of eigenvectors and eigenvalues
- Find the eigenvectors and eigenvalues for 2 x 2 and 3 x 3 matrices
Recap definitions
- Eigenvector: a vector which when operated on by a given operator gives a scalar multiple of itself.
- Eigenvalue: any number such that a given matrix minus that number times the identity matrix has zero determinant.
Additional Resources
Tutorials
- Linear Algebra Playlist : The same playlist as mentioned last week.
Software
- Eigen-calculator and Visualisation : Shows the eigs on a graph and calculates them for you - get an idea of where things move!
- Matlab Documentation : Information on eigenvectors and values on Matlab. Getting familiar with matlab will be a great advantage.
Problem sheet
Skill Building Questions
Problem 1.
Find the eigenvalues and the associated eigenvectors for the transformations represented in the following figures. (Note: The red vector shown is the result of transforming the blue vector. Be careful with the difference between the two arrowheads )
(a)
Toggle answer
(b)
Toggle answer
(c)
Toggle answer
(d)
Toggle answer
(e)
Toggle answer
(f)
Toggle answer
(g)
Toggle answer
Problem 2.
Find the eigenvalues and the associated eigenvectors of the matrices:
A quick trick for finding the eigenvalues of a 2x2 matrix just by looking at it. This is a good way for double checking your answer. Remember what you learned last week with Matlab - it’ll make your life a lot easier…
(a) (1322)
Toggle answer
For λ1=4,(1,1),
For λ2=−1,(−3,2).
(b) (131050130)
Toggle answer
For λ1=5 ⇒(−431 000 13−5)(x1 x2 x3)=(0 0 0)⇒{−4x1+3x2+x3=0 0x1+0x2+0x3=0 x1+3x2−5x3=0 ⇒{x1=6x25 x2=19x315⇒ in parametric form x1=6t5,x2=19t15,x3=t for any t∈R ⇒ if t=15, eigenvector of λ1:(18,19,15)
For λ2=1+√52 ⇒(1−1+√5231 05−1+√520 13−1+√52)(x1 x2 x3)=(0 0 0)⇒{(1−1+√52)x1+3x2+x3=0 (5−1+√52)x2=0 x1+3x2−(1+√52)x3=0 ⇒{x2=0 x1=(1+√52)x3⇒ in parametric form x1=(1+√52)t,x2=0,x3=t for any t∈R ⇒ if t=1, eigenvector of λ2:(1+√52,0,1)
For λ3=1−√52 ⇒(1−1−√5231 05−1−√520 13−1−√52)(x1 x2 x3)=(0 0 0) ⇒{x2=0 x1=(1−√52)x3⇒ in parametric form x1=(1−√52)t,x2=0,x3=t for any t∈R ⇒ if t=1, eigenvector of λ3:(1−√52,0,1)
To summarise:
For λ1=5,(18 19 15) For λ2=1+√52,(1+√52 0 1) For λ3=1−√52,(1−√52 01)
(c) (311242113)
Toggle answer
⇒ eigenvalues: λ1=2,λ2=2,λ2=6
For λ1=2 and λ2=2 ⇒(111 222 111)(x1 x2 x3)=(0 0 0)⇒x1+x2+x3=0⇒x1=−x2−x3 ⇒ in parametric form x1=−t−u,x2=t,x3=u for any t,u∈R ⇒ if t=0 and u=1, eigenvector of λ1:(−1,0,1) ⇒ if t=1 and u=0, eigenvector of λ2:(−1,1,0)
For λ3=6 ⇒(−311 2−22 113)(x1 x2 x3)=(0 0 0)⇒{−3x1+x2+x3=0 2(x1−x2+x3)=0 x1+x2−3x3=0⇒{x1=x3x2=2x3 ⇒ in parametric form x1=t,x2=2t,x3=t for any t∈R ⇒ if t=1, eigenvector of λ3:(1,2,1)
To summarise:
For λ1=2 and λ2=2,(−1 0 1),(−1 1 0). For λ3=6,(1 2 1)
(d) (1−1−11−1010−1)
Toggle answer
⇒ eigenvalues: λ1=−1,λ2=i,λ3=−i
For λ1=−1 ⇒(2−1−1 100 100)(x1 x2 x3)=(0 0 0)⇒{2x1−x2−x3=0 x1=0 ⇒{x2=−x3 x1=0
⇒ in parametric form x1=0,x2=t,x3=−t for any t∈R ⇒ if t=1, eigenvector (0,1,−1)
For λ2=i ⇒(1−i−1−1 1−1−i0 10−1−i)(x1 x2 x3)=(0 0 0)⇒{x1(1−i)−x2−x3=0 x1−(1+i)x2=0 x1−(1+i)x3=0 ⇒{x1=(1+i)x2 x2=x3
⇒ in parametric form x1=(1+i)t,x2=t,x3=t for any t∈R ⇒ if t=1, eigenvector (1+i,1,1)
For λ3=−i ⇒(1+i−1−1 1−1+i0 10−1+i)(x1 x2 x3)=(0 0 0)⇒{x1(1+i)−x2−x3=0 x1−(1−i)x2=0 x1−(1−i)x3=0 ⇒{x1=(1−i)x2x2=x3
⇒ in parametric form x1=(1−i)t,x2=t,x3=t for any t∈R ⇒ if t=1, eigenvector (1−i,1,1)
To summarise: For λ1=−1,(0 1 −1), For λ2=i.(1+i 1 1), For λ3=−i,(1−i 1 1)
Problem 3.
Let A be a 2×2 matrix whose trace equals 2 and determinant equals -2. Find the eigenvalues of A. (The trace of a square matrix is the sum of the terms along it’s leading diagonal.)
Toggle answer
⇒ eigenvalues: λ1=1+√(3),λ2=1−√(3)
Problem 4.
A=(4−62−19−2−412−2)
Given that 6 is one of the eigenvalues and its determinant is 36. Find the other eigenvalues of A.
Toggle answer
⇒p(λ):λ3−11λ2+36λ−36=0 ⇒ if λ1=6, then (λ−6) is a factor of the polynomial p(λ) then dividing the polynomial p(λ) by (λ−6)
⇒λ3−11λ2+36λ−36=(λ−6)(λ2−5λ+6)=0
⇒ eigenvalues λ2=2,λ3=3
Problem 5.
Given that (−21k) is an eigenvector of the matrix (12−11014−45) find k and the corresponding eigenvalue.
Toggle answer
⇒(1−λ2−1 1−λ1 4−45−λ)(−2 1 k)=(0 0 0)
⇒(−2(1−λ)+2−k=0 −2−λ+k=0 −8−4+k(5−λ)=0) ⇒ evaluating these three equations with λ2=2
⇒k=4
Problem 6.
The eigenvalues of the matrix A=(111−131−113) are 2 and 3. Find the corresponding eigenvectors and write down a matrix which diagonalizes A.
Toggle answer
⇒(−111−111−111)(x1x2x3)=(000) ⇒−x1+x2+x3=0 ⇒x1=x2+x3
⇒ in parametric form x1=t+u,x2=t,x3=u for any t,u∈R
⇒ if t=0,u=1, eigenvector of λ1:(1,0,1)T
⇒ if t=1,u=0, eigenvector of λ2:(1,1,0)T
For λ3=3 ⇒(−211 −101 −110)(x1 x2 x3)=(0 0 0)⇒{−2x1+x2+x3=0 −x1+x3=0 −x1+x2=0
⇒{x1=x3 x1=x2 ⇒ in parametric form x1=t,x2=t,x3=t for any t∈R ⇒ if t=1, eigenvector of λ3:(1,1,1)T
⇒P=(111 011 101) is an invertible matrix that diagonalizes A,
so that P−1AP=(200 020 003)
To summarise: For λ1=2 and λ2=2, eigenvectors of λ1:(1,0,1)T,λ2:(1,1,0)T
For λ3=3,(1,1,1)T.
Exam Style Questions
Problem 7.
This is the exam question from the Linear Transforms tutorial sheet with an extra part on eigenvectors and eigenvalues. The following figure shows a square in R2, marked with a circle and cross on its perimeter.
(a) On a single plot, sketch the result of applying the following transformation, A, to the square (including the new locations of the circle and cross).
A=[2 0 1 1.5]
(b) On the same axes draw the spans of any eigenvectors of A and label these spans with their corresponding eigenvalues.
Toggle answer

(c) Assuming the area of the initial square is 4, what is the area of this region after the transformation?
Toggle answer
Extension Questions
Problem 8.
Let A be a 3×3 matrix whose trace equals 5 and determinant equals -12. Given that 3 is an eigenvalue of A, find the other eigenvalues.
Toggle answer
⇒{a+e+j=5a(ej−fh)−b(dj−fg)+c(dh−eg)=−12⇒(abcdefghj)−λ(100010001)=(a−λbcde−λfghj−λ)=B⇒det(A)=a(ej−fh)+a(λ2−eλ−jλ)−λ(λ2−(e+j)λ+ej−fh)−b(dj−fg)+bdλ+c(dh−eg)+cgλ=0⇒−λ3+λ2(a+e+j)+λ(bd−ae−aj−ej+fh+cg)−12=0⇒−λ3+5λ2+λ(bd−ae−aj−ej+fh+cg)−12=0
⇒ for λ1=3,bd−ae−aj−ej+fh+cg=−2 ⇒−λ3+5λ2−2λ−12=0⇒(λ−3)(−λ2+2λ+4)=0
⇒ Eigenvalues: λ2=1+√5,λ3=1−√5
Problem 9.
For each of the following matrices, find an invertible matrix which diagonalizes it. (click ‘toggle answer’ to see the definition for a diagonalisable matrix)
Toggle answer
(a) A=(1322)
Toggle answer
(b) A=(1−113)
Toggle answer
(c) A=(131050130)
Toggle answer
(d) A=(1−1−11−1010−1)
Toggle answer
Problem 10.
Given that for a (2×2) matrix M, one of the eigenvalue λ1=8 and its corresponding eigenvector v1=(1,1), it is also known that matrix M changes point (−1,2) to (−2,4).
(a) Find matrix M.
Toggle answer
⇒(ab cd)(1 1)=8(1 1)⇒{a+b=8 c+d=8
Also, from the question is is known that:
(ab cd)(−1 2)=(−2 4)
⇒{−a+2b=−2 −c+2d=4
Solving simultaneously, we get: ⇒{a=6 b=2 c=4 d=4
⇒M=(62 44)
(b) Find λ2 and v2.
Toggle answer
det(M)=(λ−6)(λ−4)−8=λ2−10λ+16=(λ−2)(λ−8)=0
Therefore the other eigenvalue for matrix M is λ=2
For λ2=2, ⇒ let v2=(xy)⇒Mv2=(6x+2y4x+4y)=2(xy) ⇒v2=(−12)
(c) For line l:x−y+1=0, find l′ after transformed by matrix M.
Toggle answer
⇒(62 44)(x y)=(x′ y′)
⇒{x=14x′−18y′ y=−14x′+38y′
⇒x′−y′+2=0
⇒l′:y=x+2
Answers
For Printing
Revision Questions
The questions included are optional, but here if you want some extra practice.
- Engineering Mathematics 7th edition, Stroud and Dexter : Pages 489-508, 509-518
- A-Level Exam Questions : Matricies and other integrated vector/transform questions - need to look to the past markschemes for answers
- Matrices Practice : Many practice questions, starting off with eigs but goes on to involve all previous topics.