Loading [MathJax]/jax/output/CommonHTML/jax.js

Eigenvectors and Eigenvalues Tutorial Sheet, Sheet #4B

Learning targets

Recap definitions



Additional Resources

Tutorials

Software



Problem sheet

Skill Building Questions

Problem 1.

Find the eigenvalues and the associated eigenvectors for the transformations represented in the following figures. (Note: The red vector shown is the result of transforming the blue vector. Be careful with the difference between the two arrowheads )

(a)

1a

Toggle answer

eigenvector=v1=(1,0),eigenvalue=λ1=2 and v2=(0,1),λ2=1

(b)

1b

Toggle answer

v1=(1,0),λ1=1 appears to be the only eigenvector; however when you do the maths you will see that v2=(1,0),λ2=1 also appears. These eigenvectors are linearly dependent, so they are considered as a single vector.

(c)

1c

Toggle answer

All vectors are eigenvectors for  a uniform scaling, all with λ=2 in this case.

(d)

1d

Toggle answer

This is a shear transformation. v1=(1,0),λ1=2 appears to be the only eigenvector; however when you do the maths you will see that v2=(1,0),λ2=2 also appears. These eigenvectors are linearly dependent, so they are considered as a single vector.

(e)

1e

Toggle answer

v1=(0,1),λ1=0.5 and v2=(0,1),λ2=0.5. These eigenvectors are linearly dependent, so they are considered as a single vector.

(f)

1f

Toggle answer

No real eigenvectors, all vectors change span.

(g)

1g

Toggle answer

v1=(1,0),λ1=2 and v2=(0,1),λ2=2

Problem 2.

Find the eigenvalues and the associated eigenvectors of the matrices: A quick trick for finding the eigenvalues of a 2x2 matrix just by looking at it. This is a good way for double checking your answer. Remember what you learned last week with Matlab - it’ll make your life a lot easier…

(a) (1322)

Toggle answer

B=(1322)λ(1001)B=(1λ322λ) det(B)=0(1λ)(2λ)6=0λ23λ4=0 factorizing:(λ4)(λ+1)=0 eigenvalues:λ1=4,λ2=1 For λ1=4, Bx=0(33 22)(x1 x2)=(0 0)3x1+3x2=0 2x12x2=0 x1=x2 in parametric form x1=t,x2=t for any t R  if t=1, eigenvector of λ1:(1,1) For λ2=1, (23 23)(x1 x2)=(0 0)2x1+3x2=0 2x1+3x2=0x1=3x22  in parametric form x1=3t2,x2=t for any tR  if t=2, eigenvector of λ1:(3,2) To summarise:
For λ1=4,(1,1),
For λ2=1,(3,2).

(b) (131050130)

Toggle answer

B=(131050130)λ(100010001)(1λ3105λ013λ) det(B)=(1λ)(5λ)(λ)+1((5λ)(1))=0(5λ)(λ2λ1)=0{5λ=0λ2λ1=0eigenvalues:λ1=5,λ2=1+52,λ3=152
For λ1=5 (431 000 135)(x1 x2 x3)=(0 0 0){4x1+3x2+x3=0 0x1+0x2+0x3=0 x1+3x25x3=0 {x1=6x25 x2=19x315 in parametric form x1=6t5,x2=19t15,x3=t for any tR  if t=15, eigenvector of λ1:(18,19,15)
For λ2=1+52 (11+5231 051+520 131+52)(x1 x2 x3)=(0 0 0){(11+52)x1+3x2+x3=0 (51+52)x2=0 x1+3x2(1+52)x3=0 {x2=0 x1=(1+52)x3 in parametric form x1=(1+52)t,x2=0,x3=t for any tR  if t=1, eigenvector of λ2:(1+52,0,1)
For λ3=152 (115231 051520 13152)(x1 x2 x3)=(0 0 0) {x2=0 x1=(152)x3 in parametric form x1=(152)t,x2=0,x3=t for any tR  if t=1, eigenvector of λ3:(152,0,1)
To summarise:
For λ1=5,(18 19 15) For λ2=1+52,(1+52 0 1) For λ3=152,(152 01)

(c) (311242113)

Toggle answer

B=(311242113)λ(100010001)(3λ1124λ2113λ) det(B)=(3λ)((4λ)(3λ)2)1(2(3λ)2)+1(21(4λ))=0 p(λ):λ310λ2+28λ24=0 possible roots of p(λ)±1,2,3,4,6,8,12,24 p(1)0;p(1)0;p(2)=0 λ1=2 is an eigenvalue and (λ2) is a factor of the polynomial p(λ), then dividing the polynomial p(λ) by (λ2) λ310λ2+28λ24=(λ2)(λ28λ12)=0
eigenvalues: λ1=2,λ2=2,λ2=6

For λ1=2 and λ2=2 (111 222 111)(x1 x2 x3)=(0 0 0)x1+x2+x3=0x1=x2x3 in parametric form x1=tu,x2=t,x3=u for any t,uR if t=0 and u=1, eigenvector of λ1:(1,0,1) if t=1 and u=0, eigenvector of λ2:(1,1,0)

For λ3=6 (311 222 113)(x1 x2 x3)=(0 0 0){3x1+x2+x3=0 2(x1x2+x3)=0 x1+x23x3=0{x1=x3x2=2x3 in parametric form x1=t,x2=2t,x3=t for any tR if t=1, eigenvector of λ3:(1,2,1)

To summarise:
For λ1=2 and λ2=2,(1 0 1),(1 1 0). For λ3=6,(1 2 1)

(d) (111110101)

Toggle answer

B=(111110101)λ(100010001)(1λ1111λ0101λ) det(B)=(1λ)(1λ)(1λ)(1)(1λ)+(1)((1λ))=0 (1+λ)(λ21)=0{1+λ=0λ21=0
eigenvalues: λ1=1,λ2=i,λ3=i

For λ1=1 (211 100 100)(x1 x2 x3)=(0 0 0){2x1x2x3=0 x1=0 {x2=x3 x1=0
in parametric form x1=0,x2=t,x3=t for any tR if t=1, eigenvector (0,1,1)

For λ2=i (1i11 11i0 101i)(x1 x2 x3)=(0 0 0){x1(1i)x2x3=0 x1(1+i)x2=0 x1(1+i)x3=0 {x1=(1+i)x2 x2=x3
in parametric form x1=(1+i)t,x2=t,x3=t for any tR if t=1, eigenvector (1+i,1,1)

For λ3=i (1+i11 11+i0 101+i)(x1 x2 x3)=(0 0 0){x1(1+i)x2x3=0 x1(1i)x2=0 x1(1i)x3=0 {x1=(1i)x2x2=x3
in parametric form x1=(1i)t,x2=t,x3=t for any tR if t=1, eigenvector (1i,1,1)

To summarise: For λ1=1,(0 1 1), For λ2=i.(1+i 1 1), For λ3=i,(1i 1 1)

Problem 3.

Let A be a 2×2 matrix whose trace equals 2 and determinant equals -2. Find the eigenvalues of A. (The trace of a square matrix is the sum of the terms along it’s leading diagonal.)

Toggle answer

considering A=(abcd){a+d=2 adbc=2 (abcd)λ(1001)=(aλbcdλ)=B det(B)=(aλ)(dλ)bc=0 λ22λ2=0
eigenvalues: λ1=1+(3),λ2=1(3)

Problem 4.

A=(4621924122)
Given that 6 is one of the eigenvalues and its determinant is 36. Find the other eigenvalues of A.

Toggle answer

considering B=(4λ6219λ24122λ) det(B)=(4λ)((9λ)(2λ)+24)+6((2λ)8)+2(12+4(9λ))=0
p(λ):λ311λ2+36λ36=0 if λ1=6, then (λ6) is a factor of the polynomial p(λ) then dividing the polynomial p(λ) by (λ6)
λ311λ2+36λ36=(λ6)(λ25λ+6)=0
eigenvalues λ2=2,λ3=3

Problem 5.

Given that (21k) is an eigenvector of the matrix (121101445) find k and the corresponding eigenvalue.

Toggle answer

B=(1λ211λ1445λ)det(B)=p(λ)=λ36λ2+11λ6=0
(1λ21 1λ1 445λ)(2 1 k)=(0 0 0)
(2(1λ)+2k=0 2λ+k=0 84+k(5λ)=0) evaluating these three equations with λ2=2
k=4

Problem 6.

The eigenvalues of the matrix A=(111131113) are 2 and 3. Find the corresponding eigenvectors and write down a matrix which diagonalizes A.

Toggle answer

For λ1=2 and λ2=2
(111111111)(x1x2x3)=(000) x1+x2+x3=0 x1=x2+x3
in parametric form x1=t+u,x2=t,x3=u for any t,uR
if t=0,u=1, eigenvector of λ1:(1,0,1)T
if t=1,u=0, eigenvector of λ2:(1,1,0)T

For λ3=3 (211 101 110)(x1 x2 x3)=(0 0 0){2x1+x2+x3=0 x1+x3=0 x1+x2=0
{x1=x3 x1=x2 in parametric form x1=t,x2=t,x3=t for any tR if t=1, eigenvector of λ3:(1,1,1)T

P=(111 011 101) is an invertible matrix that diagonalizes A,
so that P1AP=(200 020 003)

To summarise: For λ1=2 and λ2=2, eigenvectors of λ1:(1,0,1)T,λ2:(1,1,0)T
For λ3=3,(1,1,1)T.

Exam Style Questions

Problem 7.

This is the exam question from the Linear Transforms tutorial sheet with an extra part on eigenvectors and eigenvalues. The following figure shows a square in R2, marked with a circle and cross on its perimeter.

(a) On a single plot, sketch the result of applying the following transformation, A, to the square (including the new locations of the circle and cross).

A=[2 0 1 1.5]

(b) On the same axes draw the spans of any eigenvectors of A and label these spans with their corresponding eigenvalues.

7a

Toggle answer

λ=1.5,λ=2

(c) Assuming the area of the initial square is 4, what is the area of this region after the transformation?

Toggle answer

det(A)=3, therefore area=34=12

Extension Questions

Problem 8.

Let A be a 3×3 matrix whose trace equals 5 and determinant equals -12. Given that 3 is an eigenvalue of A, find the other eigenvalues.

Toggle answer

considering A=(abcdefghj)
{a+e+j=5a(ejfh)b(djfg)+c(dheg)=12(abcdefghj)λ(100010001)=(aλbcdeλfghjλ)=Bdet(A)=a(ejfh)+a(λ2eλjλ)λ(λ2(e+j)λ+ejfh)b(djfg)+bdλ+c(dheg)+cgλ=0λ3+λ2(a+e+j)+λ(bdaeajej+fh+cg)12=0λ3+5λ2+λ(bdaeajej+fh+cg)12=0
for λ1=3,bdaeajej+fh+cg=2 λ3+5λ22λ12=0(λ3)(λ2+2λ+4)=0
Eigenvalues: λ2=1+5,λ3=15

Problem 9.

For each of the following matrices, find an invertible matrix which diagonalizes it. (click ‘toggle answer’ to see the definition for a diagonalisable matrix)

Toggle answer

An n×n matrix A is said to be diagonalisable if it can be written on the form A=PDP1, where D is a diagonal n×n matrix with the eigenvalues of A as its entries and P is a nonsingular n×n matrix consisting of the eigenvectors corresponding to the eigenvalues in D

(a) A=(1322)

Toggle answer

{λ1=4,v1=(1,1)Tλ2=1,v2=(3,2)TP=(1312) is an invertible matrix that diagonalizes A, so that P1AP=(4001)

(b) A=(1113)

Toggle answer

{λ1=2,v1=(1,1)Tλ2=2,v2=(2,2)TP=(1212) is not invertible

(c) A=(131050130)

Toggle answer

{λ1=5,v1=(18,19,15)Tλ2=1+(5)2,v2=(1+52,0,1)Tλ3=1(5)2,v3=(152,0,1)TP=(181+5215219001511) is an invertible matrix that diagonalizes A, so that P1AP=(50001+52000152)

(d) A=(111110101)

Toggle answer

{λ1=1,v1=(0,1,1)Tλ2=i,v2=(1+i,1,1)Tλ3=i,v3=(1i,1,1)TP=(01+i1i111111) is an invertible matrix that diagonalizes A, so that P1AP=(1000i000i)

Problem 10.

Given that for a (2×2) matrix M, one of the eigenvalue λ1=8 and its corresponding eigenvector v1=(1,1), it is also known that matrix M changes point (1,2) to (2,4).

(a) Find matrix M.

Toggle answer

Let matrix M be M=(ab cd)

(ab cd)(1 1)=8(1 1){a+b=8 c+d=8

Also, from the question is is known that:
(ab cd)(1 2)=(2 4)

{a+2b=2 c+2d=4
Solving simultaneously, we get: {a=6 b=2 c=4 d=4

M=(62 44)

(b) Find λ2 and v2.

Toggle answer

from (a) we know f(λ)=(λ62 4λ4)

det(M)=(λ6)(λ4)8=λ210λ+16=(λ2)(λ8)=0

Therefore the other eigenvalue for matrix M is λ=2
For λ2=2, let v2=(xy)Mv2=(6x+2y4x+4y)=2(xy) v2=(12)


(c) For line l:xy+1=0, find l after transformed by matrix M.

Toggle answer

Let (x,y) be a point on line l, and (x,y) is point (x,y) after transformed by matrix M.

(62 44)(x y)=(x y)

{x=14x18y y=14x+38y

xy+2=0
l:y=x+2



Answers



For Printing



Revision Questions

The questions included are optional, but here if you want some extra practice.



Next week, Power Series and Sequences!