Laplace Transforms Tutorial Sheet, Sheet #9
Learning targets
- Derive the laplace transforms of given definitions
- Use the formula sheet to carry out transforms and inverse transforms
- Identify, rearrange and manipulate expressions to be in a ‘transformable’ format
- Use Laplace to solve non homogenous ODE’s
Additional Resources
Tutorials
- MIT Lecture : Very clear lecture by Arthur Mattuck , including the origin of laplace.
Software
- Visualisations and Code : Nice visualisations along with github to code to have a play with.
Problem sheet
Skill Building Questions
Problem 1.
Using the given definition, derive the following laplace transforms:
$ \mathcal{L} { f(t) } =\int_{0}^{\infty}f(t){e^{-st}}{dt}=F(s),\quad{s>0} $
(a) $f(t)=e^{at}$
$\Rightarrow{}\quad\boxed{F(s)=\frac{1}{s-a}}$
(b) $g(t)=9$
$\Rightarrow{}\quad\boxed{G(s)=\frac{9}{s}}$
(c) $k(t)=4t$
Using integration by parts: $udv=uv-\int{vdu}$
$u=t, dv=e^{-st}dt$ and $du=dt,$
$v=-\frac{1}{s} e^{-st}$
$\Rightarrow{}\quad$ $4\int_{0}^{\infty} t \ e^{-st}dt=4(-\frac{t}{s} e^{-st} - \int_{0}^{\infty} \frac{-1}{s} e^{-st}dt)=4(\frac{1}{s^2}(-se^{-st}t-e^{-st}))_{0}^{\infty}$
$\Rightarrow{}\quad$ $\boxed{K(s)=\frac{4}{s^2}}$
(d) $m(t)=e^{2t}$
$\Rightarrow{}\quad\ \boxed{G(s)=\frac{1}{s-2}}$
(e) $a(t)=\sin(5t)$
Using part (d) methodology $\Rightarrow{}\quad \mathcal{L}${$e^{5it}$} = $\frac{1}{s-5i}$
Rationalize the denominator $\Rightarrow{}\quad \mathcal{L}${$e^{5it}$} = $\frac{s}{s^2-5^2} + \frac{5i}{s^2-5^2}$
$\sin{}$ is the imaginary part. By using linearity $\Rightarrow{}\quad \boxed{A(s)=\frac{5}{s^2-5^2}}$
Note: The same process can be used to find the laplace of $\cos{}$ - take the real part, $\frac{s}{s^2+5^2}$!
Problem 2.
Using the DE1-MEM Formula sheet, find the Laplace Transforms of the given functions:
(a) $f(t)=6e^{-5t}+e^{3t}-5t^{3}-9$
$\Rightarrow{}\quad$ $\boxed{F(s)=\frac{6}{s+5}+\frac{1}{s-3}-\frac{30}{s^4}-\frac{9}{s}}$
(b) $g(t)=4\cos(4t)-9\sin(4t)+2\cos(10t)$
$\Rightarrow{}\quad$ $\boxed{G(s)=\frac{4s}{ {s^2}+{16}}-\frac{36}{ {s^2}+{16}}+\frac{2s}{ {s^2}+{100}}}$
(c) $k(t)=3\sinh(2t)+4\cosh(3t)$
$\Rightarrow{}\quad$ $\boxed{K(s)=\frac{6}{ {s^2}-{4}}+\frac{4s}{ {s^2}-{9}}}$
(d) $m(t)=e^{3t}+\cos(6t)-e^{3t}\cos(6t)$
$\Rightarrow{}\quad$ $\boxed{M(s)=\frac{1}{ {s}-{3}}+\frac{s}{ {s^2}+{36}}-\frac{s-3}{ {(s-3)^2}+{36}}}$
(e) $o(t)=e^{-2t}{\cos^2}(3t)-3t^2e^{3t}$
$\Rightarrow{}\quad$ $O(s)=\mathcal{L}\{ {e^{-2t}}{(\frac{1}{2}+\frac{1}{2}{\cos}(6t))}-{3t^2e^{3t}}\}=\mathcal{L}\{\frac{1}{2}{e^{-2t}}+{\frac{1}{2}{e^{-2t}}{\cos}(6t)}-{3t^2e^{3t}}\}$
$\Rightarrow{}\quad$ $\boxed{O(s)=\frac{1}{ {2s}+{4}}+\frac{s+2}{2(s+2)^{2}+72}-\frac{6}{ {(s-3)^3}}}$
Problem 3.
Compute the inverse Laplace Transform of the given functions:
(a) $F(s)= \frac{5}{s}-\frac{4}{s-2}+\frac{24}{(s-2)^5}$
$\Rightarrow{}\quad$ $\boxed{f(t)=5-{4e^{2t}}+e^{2t}{t^4}}$
(b) $G(s)= \frac{7s-1}{(s+1)(s+2)(s-3)}$
$\mathcal{L}^{-1}\{G(s)\}= \ \mathcal{L}^{-1}\{ {\frac{7s-1}{(s+1)(s+2)(s-3)}}\}$
$\frac{7s-1}{(s+1)(s+2)(s-3)}= \frac{A}{s+1}+\frac{B}{s+2}+\frac{C}{s-3}$
$\Rightarrow\quad\frac{2}{s+1}+\frac{-3}{s+2}+\frac{1}{s-3}$
Using WolframAlpha
Link to WolframAlpha $\Rightarrow{}\quad\ \boxed{g(t)=2e^{-t}-3e^{-2t}+e^{3t}}$
(c) $K(s)= \frac{4s+5}{(s-2)^2(s+3)}$
$\mathcal{L}^{-1}\{K(s)\} = \mathcal{L}^{-1}\{\frac{4s+5}{(s-2)^2(s+3)}\}$
$\frac{4s+5}{(s-2)^2(s+3)}=-\frac{7}{25(s+3)}+\frac{7}{25(s-2)}+\frac{13}{5(s-2)^2}$
Using WolframAlpha
Link to WolframAlpha $\Rightarrow{}\quad \ \boxed{k(t)=-\frac{7}{25}{e^{-3t}}+\frac{7}{25}{e^{2t}}+\frac{13}{5}{t}{e^{2t}}}$
Problem 4.
Solve the following ODE function using Laplace Transform:
$y”+4y’+8y=1\ \ if \ \ y(0)=0,\ \ y’(0)=0$
$\Rightarrow{}\quad \ s^2Y(s)-sy(0)-y'(0)+4(sY(s)-y(0))+8Y(s)=\frac{1}{s}$
$\Rightarrow{}\quad \ (s^2+4s+8)Y(s)-(s+4)y(0)-y'(0)=\frac{1}{s}$
Substitute $y(0)=0,\ \ y'(0)=0$:
$\Rightarrow{}\quad \ (s^2+4s+8)Y(s)-0-0=\frac{1}{s}$
$\Rightarrow{}\quad \ (s^2+4s+8)Y(s)=\frac{1}{s}$
$$Y(s)=\frac{1}{s(s^2+4s+8)}$$ Find the inverse Laplace transform of $Y(s)$:
Using partial fractions
$\frac{1}{s(s^2+4s+8)}=\frac{A}{s}+\frac{Bs+C}{(s^2+4s+8)}$ $\quad\Rightarrow{}\ 1=A(s^2+4s+8)+(Bs+C)s$
$Y(s)=\frac{1}{8s}-{\frac{s+4}{8(s^2+4s+8)}}$
$Y(s)=\frac{1}{8s}-{\frac{1}{8} \frac{(s+2)}{(s+2)^2+4}-\frac{1}{8} \frac{2}{(s+2)^2+4}}$
Using WolframAlpha
In this case, WolframAlpha does not return a convenient rearrangement. Further working must be done.
Link to WolframAlpha $\frac{1}{8s}$ is in a form that can be transformed using the DE1 formula sheet. Further manipulation must be done on $\frac{-s-4}{8(s^2+4s+8)}$. By thinking ahead and shifting into a form that allows us to compare with the formula sheet, $\frac{-(s+2)-2}{8(s^2+4s+8)}$.
$\Rightarrow{}\quad\frac{-(s+2)}{8(s^2+4s+8)} + \frac{-2}{8(s^2+4s+8)}$
$\Rightarrow{}\quad\frac{-1}{8}\frac{s+2}{(s+2)^2+4}-\frac{1}{8}\frac{2}{(s+2)^2+4}$
$Y(s)=\frac{1}{8s}-{\frac{1}{8} \frac{(s+2)}{(s+2)^2+4}-\frac{1}{8} \frac{2}{(s+2)^2+4}}$
Note: Recognising manipulations like this will come with practice and familiarisation with the transforms.
$\boxed{y(t)=\frac{1}{8}-{\frac{1}{8}}{e^{-2t}{\cos2t}}-\frac{1}{8}{e^{-2t}{\sin2t}}}$
Exam Style Questions
Problem 5.
Solve the following ODE function using Laplace Transform:
$y”+4y’+4y=6e^{-2t}\ \ if \ \ y(0)=-2,\ \ y’(0)=8$
$\Rightarrow{}\quad \ s^2Y(s)-sy(0)-y'(0)+4(sY(s)-y(0))+4Y(s)=\frac{6}{s+2}$
$\Rightarrow{}\quad \ (s^2+4s+4)Y(s)-(s+4)y(0)-y'(0)=\frac{6}{s+2}$
Substitute $y(0)=-2,\ \ y'(0)=8$:
$\Rightarrow{}\quad(s^2+4s+4)Y(s)+2(s+4)-8=\frac{6}{s+2}$
$\Rightarrow{}\quad(s^2+4s+4)Y(s)=\frac{6}{s+2}-2s$
$\Rightarrow{}\quad \ (s+2)^2Y(s)=\frac{6}{s+2}-{2s}$ $$Y(s)=\frac{6}{(s+2)^3}-\frac{2s}{(s+2)^2}$$ Find the inverse Laplace transform of $Y(s)$:
Using partial fractions
$Y(s)=\frac{6}{(s+2)^3}-\frac{2(s+2-2)}{(s+2)^2}$
$Y(s)=\frac{6}{(s+2)^3}-\frac{2s+4}{(s+2)^2}+\frac{4}{(s+2)^2}$
$Y(s)=\frac{6}{(s+2)^3}-\frac{2}{(s+2)}+\frac{4}{(s+2)^2}$
Using WolframAlpha
Link to WolframAlpha $y(t)=3e^{-2t}t^2-2{e^{-2t}}+4e^{-2t}t$
$\boxed{y(t)=(3t^2+4t-2){e^{-2t}}}$
Problem 6
The displacement of water in a pipe is represented by $av”+bv’+cv = P(t)$ where $v(t)$ is the displaced volume, and $P(t)$ is the pressure applied to the system.
(a) A pressure of $e^{-t}$ is applied, and at $t = 0$, the displaced volume is -1 and the flow is 0. Given $a = 0, b=1$ and $c = -1$, find an explicit formula for the laplace transform of the volume written in it’s simplest form.
$sV(t) - v(0) -1(V(t)) = \frac{1}{s+1}$
$v'(0) = 0, v(0) = -1$
$V(t)(s-1) - v(0) = \frac{1}{s+1}$
$V(t)(s-1) - (-1) = \frac{1}{s+1}$
$V(t) = \frac{\frac{1}{s+1}-1}{s-1}$
Using WolframAlpha:
Link to WolframAlpha $\boxed{V(s)=\frac{-1}{2(s+1)}-\frac{1}{2(s-1)}}$
(b) What is the displaced volume when $t = 4$?
$\mathcal{L}^{-1}${$\frac{-1}{2(s+1)}-\frac{1}{2(s-1)}$}
$= \frac{-1}{2}(e^t+e^{-t})$
At $t = 4, \boxed{v=-27.3082}$
Challenging Questions
Problem 7.
This question demonstrates a way to solve PDEs (coming in 3 topics!) utilising laplace. The one dimensional heat equation for the temperature $T(x, t)$ satisfies $\frac{\partial ^{2}T}{\partial x^{2}} = \frac{1}{\sigma}\frac{\partial T}{\partial t}$ where $t$ is time, $x$ is a spatial dimension and $\sigma$ is a positive constant.
The temperature $T(x, t)$ is subject to the following conditions:
i. $\lim_{x \to \infty} [T(x,t)] = 0$
ii. $T(0,t) = 1$
iii. $T(x,0) = 0$
Use Laplace transforms to show that
\(\mathcal{L} [{T(x,t)}] = \overline{T}(x,s) = \frac{1}{s} exp[-\sqrt{\frac{s}{\sigma}} x].\)
$\Rightarrow\quad \mathcal{L} [\sigma\frac{\partial ^{2}T}{\partial x^{2}}] = \mathcal{L} [\frac{\partial T}{\partial t}] $
$\Rightarrow\quad \sigma\frac{\partial ^{2}}{\partial x^{2}}\overline{T} = s\overline{T} - T(x,0)$
According to initial conditions, the last term is equal to 0 therefore:
$\Rightarrow\quad \frac{\partial ^{2}\overline{T}}{\partial x^{2}} = \frac{s'}{\sigma}\overline{T}$
It is a second order ODE in $\overline{T}$ with exponential solutions (think of the ODE lesson!).
$\overline{T}(x,s) = A(s)e^{-\sqrt{\frac{s}{\sigma}}x} + B(s)e^{-\sqrt{\frac{s}{\sigma}}x} $
Apply $T \rightarrow 0$ as $x \rightarrow\infty$
$\Rightarrow \overline{T} \rightarrow 0$ as $x \rightarrow\infty$
$\therefore B(s) = 0$ and $\overline{T}(x,s) = A(s)e^{-\sqrt{\frac{s}{\sigma}}x}$
Apply $T(0,t) = 1 \Rightarrow \overline{T}(0,s) = \frac{1}{s}$
$\therefore \frac{1}{s} = A(s)$
$\boxed{\overline{T}(x,s) = \frac{1}{s}e^{-\sqrt{\frac{s}{\sigma}}x}}$
WolframAlpha
You can use the formula sheet to figure out the correct inverse laplace transformations or use WolframAlpha - try typing in
inverse laplace 2/(s+4)^5
. This won’t work out nicely with all numbers though!
Click here for WolframAlpha link
Answers
For Printing
Revision Questions
The questions included are optional, but here if you want some extra practice.
- Engineering Mathematics 7th edition, Stroud and Dexter : Pages 1027-1044
- Advanced Engineering Mathematics 5th edition, Stroud and Dexter : Pages 46-91 (can use 92-154 as extension)
- Intro to Laplace : Deriving from first principles, general transformations, solving simple ODEs with some nice simultaneous laplace questions to try - ignore questions with heavyside and piecewise mentioned.
- Further Laplace : Various questions with some nice general derivation and conversion questions. Later questions are more extension. Ignore convolution and inversion by complex variables.