Laplace Transforms Tutorial Sheet, Sheet #9

Learning targets



Additional Resources

Tutorials

Software



Problem sheet

Skill Building Questions

Problem 1.

Using the given definition, derive the following laplace transforms:

$ \mathcal{L} { f(t) } =\int_{0}^{\infty}f(t){e^{-st}}{dt}=F(s),\quad{s>0} $

(a) $f(t)=e^{at}$

$\Rightarrow{}\quad$ $F(s)=\int_{0}^{\infty}{e^{-st}{e^{at}}}{dt}=\int_{0}^{\infty}{e^{-(s-a)t}{dt}}=\left[-\frac{1}{s-a}e^{-(s-a)t}\right]_0^\infty, \quad{s>a}$
$\Rightarrow{}\quad\boxed{F(s)=\frac{1}{s-a}}$








(b) $g(t)=9$

$\Rightarrow{}\quad$ $G(s)=\int_{0}^{\infty} \ {9e^{-st}{dt}}={[-\frac{9}{s}{e^{-st}}]_0^\infty}\quad$
$\Rightarrow{}\quad\boxed{G(s)=\frac{9}{s}}$








(c) $k(t)=4t$

$\Rightarrow{}\quad$ $K(s)=\int_{0}^{\infty} 4t \ e^{-st} dt=4\int_{0}^{\infty} t \ e^{-st} dt$
Using integration by parts: $udv=uv-\int{vdu}$
$u=t, dv=e^{-st}dt$ and $du=dt,$
$v=-\frac{1}{s} e^{-st}$
$\Rightarrow{}\quad$ $4\int_{0}^{\infty} t \ e^{-st}dt=4(-\frac{t}{s} e^{-st} - \int_{0}^{\infty} \frac{-1}{s} e^{-st}dt)=4(\frac{1}{s^2}(-se^{-st}t-e^{-st}))_{0}^{\infty}$
$\Rightarrow{}\quad$ $\boxed{K(s)=\frac{4}{s^2}}$








(d) $m(t)=e^{2t}$

$\Rightarrow{}\quad$ $G(s)=\int_{0}^{\infty} \ {e^{-st}}{e^{2t}}{dt}={\left[-\frac{1}{s-2}{e^{-(s-2)t}}\right]_0^\infty}\quad$
$\Rightarrow{}\quad\ \boxed{G(s)=\frac{1}{s-2}}$








(e) $a(t)=\sin(5t)$

According to De Moivre's theorem, $\cos(at) + i\sin(at) = e^{iat}$
Using part (d) methodology $\Rightarrow{}\quad \mathcal{L}${$e^{5it}$} = $\frac{1}{s-5i}$
Rationalize the denominator $\Rightarrow{}\quad \mathcal{L}${$e^{5it}$} = $\frac{s}{s^2-5^2} + \frac{5i}{s^2-5^2}$
$\sin{}$ is the imaginary part. By using linearity $\Rightarrow{}\quad \boxed{A(s)=\frac{5}{s^2-5^2}}$
Note: The same process can be used to find the laplace of $\cos{}$ - take the real part, $\frac{s}{s^2+5^2}$!









Problem 2.

Using the DE1-MEM Formula sheet, find the Laplace Transforms of the given functions:

(a) $f(t)=6e^{-5t}+e^{3t}-5t^{3}-9$

$\Rightarrow{}\quad$ $F(s)=\mathcal{L}\{ {6e^{-5t}+e^{3t}-5t^{3}-9}\}$
$\Rightarrow{}\quad$ $\boxed{F(s)=\frac{6}{s+5}+\frac{1}{s-3}-\frac{30}{s^4}-\frac{9}{s}}$








(b) $g(t)=4\cos(4t)-9\sin(4t)+2\cos(10t)$

$\Rightarrow{}\quad$ $G(s)=\mathcal{L}\{ {4\cos(4t)}\}-\mathcal{L}\{ {9\sin(4t)}\}+\mathcal{L}\{ {2\cos(10t)}\}$
$\Rightarrow{}\quad$ $\boxed{G(s)=\frac{4s}{ {s^2}+{16}}-\frac{36}{ {s^2}+{16}}+\frac{2s}{ {s^2}+{100}}}$








(c) $k(t)=3\sinh(2t)+4\cosh(3t)$

$\Rightarrow{}\quad$ $K(s)=\mathcal{L}\{ {3\sinh(2t)}\}+\mathcal{L}\{ {4\cosh(3t)}\}$
$\Rightarrow{}\quad$ $\boxed{K(s)=\frac{6}{ {s^2}-{4}}+\frac{4s}{ {s^2}-{9}}}$








(d) $m(t)=e^{3t}+\cos(6t)-e^{3t}\cos(6t)$

$\Rightarrow{}\quad$ $M(s)=\mathcal{L}\{ {e^{3t}}\}+\mathcal{L}\{ {\cos(6t)}\}-\mathcal{L}\{ {e^{3t}\cos(6t)}\}$
$\Rightarrow{}\quad$ $\boxed{M(s)=\frac{1}{ {s}-{3}}+\frac{s}{ {s^2}+{36}}-\frac{s-3}{ {(s-3)^2}+{36}}}$








(e) $o(t)=e^{-2t}{\cos^2}(3t)-3t^2e^{3t}$

$\Rightarrow{}\quad$ ${\cos^2}(3t)$ can be writen as = $\frac{1+{\cos}(6t)}{2}$
$\Rightarrow{}\quad$ $O(s)=\mathcal{L}\{ {e^{-2t}}{(\frac{1}{2}+\frac{1}{2}{\cos}(6t))}-{3t^2e^{3t}}\}=\mathcal{L}\{\frac{1}{2}{e^{-2t}}+{\frac{1}{2}{e^{-2t}}{\cos}(6t)}-{3t^2e^{3t}}\}$
$\Rightarrow{}\quad$ $\boxed{O(s)=\frac{1}{ {2s}+{4}}+\frac{s+2}{2(s+2)^{2}+72}-\frac{6}{ {(s-3)^3}}}$









Problem 3.

Compute the inverse Laplace Transform of the given functions:

(a) $F(s)= \frac{5}{s}-\frac{4}{s-2}+\frac{24}{(s-2)^5}$

$\mathcal{L}^{-1}\{F(s)\}= \ \mathcal{L}^{-1}\{ {\frac{5}{s}-\frac{4}{s-2}+\frac{24}{(s-2)^5}}\}$
$\Rightarrow{}\quad$ $\boxed{f(t)=5-{4e^{2t}}+e^{2t}{t^4}}$








(b) $G(s)= \frac{7s-1}{(s+1)(s+2)(s-3)}$

Using partial fractions
$\mathcal{L}^{-1}\{G(s)\}= \ \mathcal{L}^{-1}\{ {\frac{7s-1}{(s+1)(s+2)(s-3)}}\}$
$\frac{7s-1}{(s+1)(s+2)(s-3)}= \frac{A}{s+1}+\frac{B}{s+2}+\frac{C}{s-3}$
$\Rightarrow\quad\frac{2}{s+1}+\frac{-3}{s+2}+\frac{1}{s-3}$
Using WolframAlpha
Link to WolframAlpha $\Rightarrow{}\quad\ \boxed{g(t)=2e^{-t}-3e^{-2t}+e^{3t}}$








(c) $K(s)= \frac{4s+5}{(s-2)^2(s+3)}$

Using partial fractions
$\mathcal{L}^{-1}\{K(s)\} = \mathcal{L}^{-1}\{\frac{4s+5}{(s-2)^2(s+3)}\}$
$\frac{4s+5}{(s-2)^2(s+3)}=-\frac{7}{25(s+3)}+\frac{7}{25(s-2)}+\frac{13}{5(s-2)^2}$
Using WolframAlpha
Link to WolframAlpha $\Rightarrow{}\quad \ \boxed{k(t)=-\frac{7}{25}{e^{-3t}}+\frac{7}{25}{e^{2t}}+\frac{13}{5}{t}{e^{2t}}}$









Problem 4.

Solve the following ODE function using Laplace Transform:

$y”+4y’+8y=1\ \ if \ \ y(0)=0,\ \ y’(0)=0$

$\mathcal{L}\{y"(t)+4y'(t)+8y(t)\}=\mathcal{L}\{y"(t)\}+4\mathcal{L}\{y'(t)\}+8\mathcal{L}\{y(t)\}=\mathcal{L}\{1\}$
$\Rightarrow{}\quad \ s^2Y(s)-sy(0)-y'(0)+4(sY(s)-y(0))+8Y(s)=\frac{1}{s}$
$\Rightarrow{}\quad \ (s^2+4s+8)Y(s)-(s+4)y(0)-y'(0)=\frac{1}{s}$
Substitute $y(0)=0,\ \ y'(0)=0$:
$\Rightarrow{}\quad \ (s^2+4s+8)Y(s)-0-0=\frac{1}{s}$
$\Rightarrow{}\quad \ (s^2+4s+8)Y(s)=\frac{1}{s}$
$$Y(s)=\frac{1}{s(s^2+4s+8)}$$ Find the inverse Laplace transform of $Y(s)$:
Using partial fractions
$\frac{1}{s(s^2+4s+8)}=\frac{A}{s}+\frac{Bs+C}{(s^2+4s+8)}$ $\quad\Rightarrow{}\ 1=A(s^2+4s+8)+(Bs+C)s$
$Y(s)=\frac{1}{8s}-{\frac{s+4}{8(s^2+4s+8)}}$
$Y(s)=\frac{1}{8s}-{\frac{1}{8} \frac{(s+2)}{(s+2)^2+4}-\frac{1}{8} \frac{2}{(s+2)^2+4}}$
Using WolframAlpha
In this case, WolframAlpha does not return a convenient rearrangement. Further working must be done.
Link to WolframAlpha $\frac{1}{8s}$ is in a form that can be transformed using the DE1 formula sheet. Further manipulation must be done on $\frac{-s-4}{8(s^2+4s+8)}$. By thinking ahead and shifting into a form that allows us to compare with the formula sheet, $\frac{-(s+2)-2}{8(s^2+4s+8)}$.
$\Rightarrow{}\quad\frac{-(s+2)}{8(s^2+4s+8)} + \frac{-2}{8(s^2+4s+8)}$
$\Rightarrow{}\quad\frac{-1}{8}\frac{s+2}{(s+2)^2+4}-\frac{1}{8}\frac{2}{(s+2)^2+4}$
$Y(s)=\frac{1}{8s}-{\frac{1}{8} \frac{(s+2)}{(s+2)^2+4}-\frac{1}{8} \frac{2}{(s+2)^2+4}}$
Note: Recognising manipulations like this will come with practice and familiarisation with the transforms.
$\boxed{y(t)=\frac{1}{8}-{\frac{1}{8}}{e^{-2t}{\cos2t}}-\frac{1}{8}{e^{-2t}{\sin2t}}}$









Exam Style Questions

Problem 5.

Solve the following ODE function using Laplace Transform:

$y”+4y’+4y=6e^{-2t}\ \ if \ \ y(0)=-2,\ \ y’(0)=8$

$\mathcal{L}\{y"(t)+4y'(t)+4y(t)\}=\mathcal{L}\{y"(t)\}+4\mathcal{L}\{y'(t)\}+4\mathcal{L}\{y(t)\}=\mathcal{L}\{6e^{-2t}\}$
$\Rightarrow{}\quad \ s^2Y(s)-sy(0)-y'(0)+4(sY(s)-y(0))+4Y(s)=\frac{6}{s+2}$
$\Rightarrow{}\quad \ (s^2+4s+4)Y(s)-(s+4)y(0)-y'(0)=\frac{6}{s+2}$
Substitute $y(0)=-2,\ \ y'(0)=8$:
$\Rightarrow{}\quad(s^2+4s+4)Y(s)+2(s+4)-8=\frac{6}{s+2}$
$\Rightarrow{}\quad(s^2+4s+4)Y(s)=\frac{6}{s+2}-2s$
$\Rightarrow{}\quad \ (s+2)^2Y(s)=\frac{6}{s+2}-{2s}$ $$Y(s)=\frac{6}{(s+2)^3}-\frac{2s}{(s+2)^2}$$ Find the inverse Laplace transform of $Y(s)$:
Using partial fractions
$Y(s)=\frac{6}{(s+2)^3}-\frac{2(s+2-2)}{(s+2)^2}$
$Y(s)=\frac{6}{(s+2)^3}-\frac{2s+4}{(s+2)^2}+\frac{4}{(s+2)^2}$
$Y(s)=\frac{6}{(s+2)^3}-\frac{2}{(s+2)}+\frac{4}{(s+2)^2}$
Using WolframAlpha
Link to WolframAlpha $y(t)=3e^{-2t}t^2-2{e^{-2t}}+4e^{-2t}t$
$\boxed{y(t)=(3t^2+4t-2){e^{-2t}}}$









Problem 6

The displacement of water in a pipe is represented by $av”+bv’+cv = P(t)$ where $v(t)$ is the displaced volume, and $P(t)$ is the pressure applied to the system.

(a) A pressure of $e^{-t}$ is applied, and at $t = 0$, the displaced volume is -1 and the flow is 0. Given $a = 0, b=1$ and $c = -1$, find an explicit formula for the laplace transform of the volume written in it’s simplest form.

$v'(t)-v(t) = e^{-t}$
$sV(t) - v(0) -1(V(t)) = \frac{1}{s+1}$
$v'(0) = 0, v(0) = -1$
$V(t)(s-1) - v(0) = \frac{1}{s+1}$
$V(t)(s-1) - (-1) = \frac{1}{s+1}$
$V(t) = \frac{\frac{1}{s+1}-1}{s-1}$
Using WolframAlpha:
Link to WolframAlpha $\boxed{V(s)=\frac{-1}{2(s+1)}-\frac{1}{2(s-1)}}$








(b) What is the displaced volume when $t = 4$?

Transform back to the original dimension using the inverse laplace transform.
$\mathcal{L}^{-1}${$\frac{-1}{2(s+1)}-\frac{1}{2(s-1)}$}
$= \frac{-1}{2}(e^t+e^{-t})$
At $t = 4, \boxed{v=-27.3082}$









Challenging Questions

Problem 7.

This question demonstrates a way to solve PDEs (coming in 3 topics!) utilising laplace. The one dimensional heat equation for the temperature $T(x, t)$ satisfies $\frac{\partial ^{2}T}{\partial x^{2}} = \frac{1}{\sigma}\frac{\partial T}{\partial t}$ where $t$ is time, $x$ is a spatial dimension and $\sigma$ is a positive constant.

The temperature $T(x, t)$ is subject to the following conditions:
i. $\lim_{x \to \infty} [T(x,t)] = 0$
ii. $T(0,t) = 1$
iii. $T(x,0) = 0$

Use Laplace transforms to show that
\(\mathcal{L} [{T(x,t)}] = \overline{T}(x,s) = \frac{1}{s} exp[-\sqrt{\frac{s}{\sigma}} x].\)

Taking laplace transforms in t (x is unaffected)
$\Rightarrow\quad \mathcal{L} [\sigma\frac{\partial ^{2}T}{\partial x^{2}}] = \mathcal{L} [\frac{\partial T}{\partial t}] $
$\Rightarrow\quad \sigma\frac{\partial ^{2}}{\partial x^{2}}\overline{T} = s\overline{T} - T(x,0)$
According to initial conditions, the last term is equal to 0 therefore:
$\Rightarrow\quad \frac{\partial ^{2}\overline{T}}{\partial x^{2}} = \frac{s'}{\sigma}\overline{T}$
It is a second order ODE in $\overline{T}$ with exponential solutions (think of the ODE lesson!).
$\overline{T}(x,s) = A(s)e^{-\sqrt{\frac{s}{\sigma}}x} + B(s)e^{-\sqrt{\frac{s}{\sigma}}x} $
Apply $T \rightarrow 0$ as $x \rightarrow\infty$
$\Rightarrow \overline{T} \rightarrow 0$ as $x \rightarrow\infty$
$\therefore B(s) = 0$ and $\overline{T}(x,s) = A(s)e^{-\sqrt{\frac{s}{\sigma}}x}$

Apply $T(0,t) = 1 \Rightarrow \overline{T}(0,s) = \frac{1}{s}$
$\therefore \frac{1}{s} = A(s)$

$\boxed{\overline{T}(x,s) = \frac{1}{s}e^{-\sqrt{\frac{s}{\sigma}}x}}$









WolframAlpha

You can use the formula sheet to figure out the correct inverse laplace transformations or use WolframAlpha - try typing in inverse laplace 2/(s+4)^5. This won’t work out nicely with all numbers though!

Click here for WolframAlpha link

Answers



For Printing



Revision Questions

The questions included are optional, but here if you want some extra practice.



Next week, Fourier Series!