Multivariate Calculus Tutorial Sheet, #11
Learning Targets
- Calculate the partial derivatives of functions of multiple variables.
- Use partial derivatives to find stationary points.
- Use the total derivatives.
- Use total differentials.
- Use vector calculus to find divergence, gradient, Laplacian and curl of vector functions.
Additional Resources
Tutorials
- Calculus Playlist : Bringing back this playlist - see if it makes you have an even greater perspective!
Software
- 3D Graph Plotter : Plot 3d graphs, add vectors, points etc
Problem sheet
Skill Building Questions
Problem 1.
For each of the functions below, find all the first order partial derivatives:
(a) $f\left(x,y\right)=xy^3+x^2y^2$
(b) $f\left(x,y\right)=xe^{2x+3y}$
(c) $f\left(x,y\right)=\frac{x-y}{x+y}$
(d) $f\left(x,y\right)=2x\sin{\left(x^2y\right)}$
(e) $f\left(x,y,z\right)=x\cos{z+x^2y^3e^z}$
Problem 2.
If $f\left(x,y\right)=\sqrt[ 3 ]{x^3+y^3}$, find $f_x\left(a,0\right)$
Problem 3.
For the function $u\left(x,y\right)=\ln(1+xy^2)$, show that the second order partial derivative $\frac{\partial^2 u}{\partial x \partial y}$ is equal to $\frac{\partial^2 u}{\partial y \partial x}$ (note the order of differentiation) by calculating both ways.
Problem 4.
Find the turning points, $[x_0, y_0, f(x_0,y_0)]$, for the partial derivatives of the function $f(x,y) = x e^{-x^2 - y^2}$.
Problem 5.
Calculate the divergence ($\nabla \cdot$) and the curl ($\nabla \times$) of the following vector fields:
(a) $\mathbf{x} = \begin{bmatrix} x \newline y \newline z \end{bmatrix}$
$$ \boxed{ \nabla \cdot \mathbf{x} = 3, \ \ \ \nabla \times \mathbf{x} = \begin{bmatrix} 0 \newline 0 \newline 0 \end{bmatrix} } $$
(b) $\mathbf{u} = \begin{bmatrix} -y \newline x \newline 3 z^2 \end{bmatrix}$
(c) $\mathbf{a} = \begin{bmatrix} 0 \newline 0 \newline x z \end{bmatrix}$
(d) $\mathbf{p} = \begin{bmatrix} x y z \newline x^2 + y^2 \newline -z \end{bmatrix}$
(e) $\mathbf{q} = \begin{bmatrix} \sin x \cos y \sin z \newline \cos x \sin y \sin z \newline \cos z \end{bmatrix}$
Problem 6.
Calculate the gradient $(\nabla)$ and Laplacian $(\nabla^2)$ of the following functions:
(a) $7xy^2+z^4$
$$ \nabla(7xy^2+z^4) = \begin{bmatrix} \frac{\partial{}f}{\partial{}x} \newline \frac{\partial{}f}{\partial{}y} \newline \frac{\partial{}f}{\partial{}z} \end{bmatrix}(7xy^2+z^4) \Rightarrow\quad\boxed{\begin{bmatrix} 7y^2 \newline 14xy \newline 4z^3 \end{bmatrix}}$$
The Laplacian is effectively applying $\nabla$ twice, hence there are 2 methods,
Method 1: Using the answer for the gradient, we can apply $\nabla$ again,
$$ \nabla\begin{bmatrix} 7y^2 \newline 14xy \newline 4z^3 \end{bmatrix}\Rightarrow\quad\begin{bmatrix} \frac{\partial{}f}{\partial{}x} \newline \frac{\partial{}f}{\partial{}y} \newline \frac{\partial{}f}{\partial{}z} \end{bmatrix}\begin{bmatrix} 7y^2 \newline 14xy \newline 4z^3 \end{bmatrix} \Rightarrow 0 + 14x + 12z^2\Rightarrow\quad\boxed{14x + 12z^2}$$
Method 1 is a two-step process, applying $\begin{bmatrix} \frac{\partial{}f}{\partial{}x} \newline \frac{\partial{}f}{\partial{}y} \newline \frac{\partial{}f}{\partial{}z} \end{bmatrix}$ twice.
Method 2:
$$\nabla^2(7xy^2+z^4) = (\frac{\partial{}^2}{\partial{}x^2}+\frac{\partial{}^2}{\partial{}y^2}+\frac{\partial{}^2}{\partial{}z^2})(7xy^2+z^4)$$
$$\Rightarrow\quad 0 + 14x + 12z^2\Rightarrow\quad\boxed{14x + 12z^2}$$
Method 2 is a one step process, applying $(\frac{\partial{}^2}{\partial{}x^2}+\frac{\partial{}^2}{\partial{}y^2}+\frac{\partial{}^2}{\partial{}z^2})$ once.
(b) $\sin (xy) + 2z^2$
$$ \nabla^2(sin (xy) + 2z^2) = (\frac{\partial{}^2}{\partial{}x^2}+\frac{\partial{}^2}{\partial{}y^2}+\frac{\partial{}^2}{\partial{}z^2})(sin (xy) + 2z^2) $$
$$ \Rightarrow\quad -y^2\sin(xy)-x^2\sin(xy) + 4 \Rightarrow\quad\boxed{4 - (x^2+y^2)\sin (xy)} $$
Problem 7.
Show that the function $u\left(x,y\right)=\ln(1+xy^2)$ satisfies the partial differential equation: \(2\frac{ {\partial{}}^2u}{ {\partial{}x}^2}+y^3\frac{ {\partial{}}^2u}{\partial{}y\partial{}x}=0\)
$$ \frac{ {\partial{}}^2u}{\partial{}y\partial{}x}=\frac{\partial{}}{\partial{}y}\left(\frac{\partial{}u}{\partial{}x}\right)=\frac{2y\left(1+xy^2\right)-y^2(2xy)}{ {(1+xy^2)}^2}=\frac{2y+2xy^3-2xy^3}{ { {(1+xy}^2)}^2}=\frac{2y}{ { {(1+xy}^2)}^2} $$
$$ \boxed{ 2\frac{ {\partial{}}^2u}{\partial{}x^2}+y^3\frac{ {\partial{}}^2u}{\partial{}y\partial{}x}=-\frac{2y^4}{ { {(1+xy}^2)}^2}+\frac{ {2y}^4}{ { {(1+xy}^2)}^2}=0 } $$
Exam Style Questions
Problem 8.
Given the expressions,
\(f(u,v)=2u^3-7uv+v^2,\quad u(x,y)=\frac{x}{y}, \quad v(x,y)=\frac{y^2}{x}\)
Use the multivariate chain rule to calculate $\frac{\partial{}f}{\partial{x}}$ of $f(u(x,y),v(x,y))$.
(Hint: The final expression should be in terms of $x$ and $y$)
$$\frac{\partial{}f}{\partial{}x} = \frac{\partial{}f}{\partial{}u}\frac{\partial{}u}{\partial{}x} + \frac{\partial{}f}{\partial{}v}\frac{\partial{}v}{\partial{}x}$$
Calculate each of the needed partial derivatives,
$$\frac{\partial{}f}{\partial{}u} = 6u^2 - 7v, \frac{\partial{}f}{\partial{}v} = -7u +2v$$
$$\frac{\partial{}u}{\partial{}x} = \frac{1}{y}, \frac{\partial{}v}{\partial{}x} = -\frac{y^2}{x^2}$$
Substitute all of these derivatives into the multivariate chain rule equation,
$$\frac{\partial{}f}{\partial{}x} = (6u^2-7v)(\frac{1}{y})+(-7u+2v)(-\frac{y^2}{x^2})$$
Substitute $u$ and $v$,
$$\frac{\partial{}f}{\partial{}x}=(\frac{6x^2}{y^2}-\frac{7y^2}{x})(\frac{1}{y})+(-\frac{7x}{y}+\frac{2y^2}{x})(-\frac{y^2}{x})$$
$$\Rightarrow \frac{6x^2}{y^3} - \frac{7y}{x} + \frac{7y}{x} - \frac{2y^4}{x^3}$$
Simplify,
$$\frac{\partial{}f}{\partial{}x} = \frac{6x^2}{y^3} - \frac{2y^4}{x^3}$$
Problem 9.
The total differential is defined as, $ df = (\frac{\partial{}f}{\partial{}x})_y dx + (\frac{\partial{}f}{\partial{}y})_x dy $.
Using this expression, find an expression for the partial derivative, $(\frac{\partial{}\gamma}{\partial{}\beta}) _ \alpha $.
Use the identities, $(\frac{\partial{}a}{\partial{}b})_a = 0$ and $(\frac{\partial{}a}{\partial{}a})_b = 1$.
Divide through by $d\beta$ holding $\alpha$ constant,
$$ (\frac{\partial{}\alpha}{\partial{}\beta}) _ \alpha = (\frac{\partial{}\alpha}{\partial{}\beta}) _ \gamma (\frac{\partial{}\beta}{\partial{}\beta}) _ \alpha + (\frac{\partial{}\alpha}{\partial{}\gamma}) _ \beta (\frac{\partial{}\gamma}{\partial{}\beta}) _ \alpha$$
Apply the identities,
$$ \Rightarrow\quad 0 = (\frac{\partial{}\alpha}{\partial{}\beta}) _ \gamma + (\frac{\partial{}\alpha}{\partial{}\gamma}) _ \beta (\frac{\partial{}\gamma}{\partial{}\beta}) _ \alpha$$
Rearrange,
$$ (\frac{\partial{}\gamma}{\partial{}\beta}) _ \alpha =\boxed{ -\frac{(\frac{\partial{}\alpha}{\partial{}\beta}) _ \gamma}{(\frac{\partial{}\alpha}{\partial{}\gamma}) _ \beta}} $$
Problem 10.
The ellipsoid $4x^2+2y^2+z^2=16$ intersects the plane $y=2$ in an ellipse. Find parametric equations for the tangent line to this ellipse at the point (1, 2, 2).
Extension Questions
Problem 11.
For functions $f(u, v)$, $u(x, y)$, and $v(x, y)$, calculate the partial derivative $\frac{\partial f}{\partial y}$, by direct substitution then the total derivative chain rule. Check that the approaches match. This question only tests your hand at manual working out, so if you are confident in your understanding, feel free to only do a couple.
(a) $ f(u, v) = \sin(u)\exp(-v), \quad u(x, y) = x / y, \quad v (x, y) = x y $
$\Rightarrow{}$ Chain rule: $ \left(\frac{\partial f}{\partial y}\middle)_x = \middle(\frac{\partial f}{\partial u}\middle)_v \middle(\frac{\partial u}{\partial y}\middle)_x + \middle(\frac{\partial f}{\partial v}\middle)_u \middle(\frac{\partial v}{\partial y}\right)_x $ \begin{align*} \left(\frac{\partial f}{\partial u}\right)_v &= e^{-v} \cos u & \left(\frac{\partial f}{\partial v}\right)_u &= -e^{-v} \sin u \newline \left(\frac{\partial u}{\partial y}\right)_x &= -\frac{x}{y^2} & \left(\frac{\partial v}{\partial y}\right)_x &= x \end{align*}
$$ \Rightarrow{} \boxed{ \left(\frac{\partial f}{\partial y}\right)_x = -\frac{x e^{-x y} \cos(x/y)}{y^2} - x e^{-xy} \sin(x/y) } $$
(b) $f(u, v) = u^2 + 2 u v + v^2, \quad u(x, y) = \sin(x + 5 y), \quad v(x, y) = \cos(x + 5 y)$
$$ \Rightarrow{} \boxed{ \left(\frac{\partial f}{\partial y}\right)_x = 10 \cos^2(x + 5 y) - 10 \sin^2(x + 5 y) } $$
(c) $f(u, v) = \frac{\arctan(u)}{1 + v^2}, \quad u(x, y) = \sqrt{x y}, \quad v(x, y) = x \ln(3 y) $
$$\Rightarrow{} \boxed{ \left(\frac{\partial f}{\partial y}\right)_x = \frac{1}{(1+xy)(1+x^2 \ln(3 y)^2)}\frac{x}{2\sqrt{xy}} -\frac{2 x \ln(3 y) \arctan(\sqrt{x y})}{(1+x^2 \ln(3 y)^2)^2} x / y } $$
(d) $f(u, v) = \tanh(w u + v), \quad u(x, y) = \tanh(x a + y), \quad v(x, y) = y$
Problem 12.
If $ g\left(s,t\right)=f(s^2-t^2,\ t^2-s^2) $ and $f$ is differentiable, show that $g$ satisfies the equation: \(t\frac{\partial{}g}{\partial{}s}+s\frac{\partial{}g}{\partial{}t}=0\)
$$ \frac{\partial{}g}{\partial{}s}=\frac{\partial{}f}{\partial{}x}\frac{\partial{}x}{\partial{}s}+\frac{\partial{}f}{\partial{}y}\frac{\partial{}y}{\partial{}s}=(\frac{\partial{}f}{\partial{}x})(2s)+(\frac{\partial{}f}{\partial{}y})(-2s) $$
$$ \frac{\partial{}g}{\partial{}t}=\frac{\partial{}f}{\partial{}x}\frac{\partial{}x}{\partial{}t}+\frac{\partial{}f}{\partial{}y}\frac{\partial{}y}{\partial{}t}=(\frac{\partial{}f}{\partial{}x})(-2t)+(\frac{\partial{}f}{\partial{}y})(2t) $$
$$ \boxed{ t\frac{\partial{}g}{\partial{}s}+s\frac{\partial{}g}{\partial{}t}=(\frac{\partial{}f}{\partial{}x})(2st)+(\frac{\partial{}f}{\partial{}y})(-2st)+(\frac{\partial{}f}{\partial{}x})(-2st)+(\frac{\partial{}f}{\partial{}y})(2st)=0 }$$
Answers
For Printing
The questions included are optional, but here if you want some extra practice.
Revision Questions
- Engineering Mathematics 7th edition, Stroud and Dexter : Pages 731-767
- Partial Differentiation Questions : Look at ‘stationary points’, for a bit more fun onto ‘constrained optimisation’.
- Practice Problems : Lots and lots of questions in various contexts - try ‘applications of partial derivatives’, they’re really good!